Let R be a ring, not necessarily commutative, with unit. Let $Z(R)$ be the set of all zero-divisors of R. The total graph of R, denoted by $T(\Gamma(R))$ is the graph with all elements of R as vertices where two distinct vertices $x, y \in R$ are adjacent iff $x + y \in Z(R)$. Let the regular graph of R, denoted by $\text{Reg}(\Gamma(R))$, be the induced subgraph of $T(\Gamma(R))$ on the regular elements of R. Let $Z(\Gamma(R))$ be the induced subgraph of $T(\Gamma(R))$ on $Z(R)$.

In this paper, the authors show that $\text{gr}(\text{Reg}(\Gamma(R)))$ and $\text{gr}(T(\Gamma(R))) \in \{3, 4, \infty\}$.

Also, the following results are proved.

Theorem. Let R be a left Artinian ring and $\text{Reg}(\Gamma(R))$ be a tree. Then R is isomorphic to one of the following rings, $Z_1, Z_4, Z_2[x]/(x^2), Z_2^2, Z_4 \times Z_2^2, Z_4 \times Z_2^2, Z_2[x]/(x^2) \times Z_2^2, \text{UT}_2\mathbb{Z}_2, \text{UT}_2\mathbb{Z}_2 \times Z_2^2$, where $\text{UT}_2(\mathbb{Z}_2)$ denotes the ring of 2×2 upper triangular matrices over \mathbb{Z}_2 and r is a natural number.

Theorem. Let R be a left Noetherian ring and $2 \notin Z(R)$. If R is reduced, then $\chi(\text{Reg}(\Gamma(R))) = \omega(\text{Reg}(\Gamma(R))) = 2^r$, where r is the number of minimal prime ideals of R.

Theorem. Let R be a left Artinian ring. If $\text{Reg}(\Gamma(R))$ contains a vertex adjacent to all other vertices, then $\text{Reg}(\Gamma(R))$ is complete.

Theorem. Let R be a semiprime left Noetherian ring. If $\text{Reg}(R)$ is finite, then R is finite.

The authors also pose the conjecture: “Suppose that R is a left Noetherian ring. If $\text{Reg}(R)$ is finite, then R is finite”.

Reviewer: S. K. Nimbhorkar (Aurangabad)

MSC:
- 05C25 Graphs and abstract algebra (groups, rings, fields, etc.)
- 05C15 Coloring of graphs and hypergraphs
- 16U99 Conditions on elements

Keywords:
- regular graph
- total graph
- girth
- chromatic number
- Noetherian ring
- Artinian ring

Full Text: DOI

References:

[1] DOI: 10.1017/S0004972710001875 · Zbl 1222.13001 · doi:10.1017/S0004972710001875
[6] DOI: 10.1017/S0004972711002802 · Zbl 1244.16040 · doi:10.1017/S0004972711002802
[8] DOI: 10.1017/S0004972708001111 · Zbl 1181.13001 · doi:10.1017/S0004972708001111
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.