A graph G is called k-distance-transitive iff for every two pairs $(x_1, x_2), (y_1, y_2)$ of vertices with distances $d(x_1, x_2) = d(y_1, y_2) \leq k$ there is an automorphism of the graph G mapping x_1 to y_1 and x_2 to y_2. Graphs that are k-distance-transitive for all $k \in \mathbb{N}$ are called distance-transitive graphs.

The main result is the following theorem: Let G be a connected infinite graph with more than one end. Then the following properties are equivalent:

(i) G is distance-transitive;

(ii) G is 2-distance-transitive;

(iii) $G \cong X_{\kappa, \lambda}$ for $\kappa, \lambda \geq 2$ (where $X_{\kappa, \lambda}$ denotes the infinite graph of connectivity 1 such that each block is a complete graph on κ vertices and every vertex lies in λ distinct blocks).

Moreover, the authors consider infinite graphs with the property that the existence of an isomorphism between two finite induced subgraphs implies the existence of a graph automorphism mapping one of the subgraphs to the other.

Reviewer: Ulrike Baumann (Dresden)

MSC:

05C25 Graphs and abstract algebra (groups, rings, fields, etc.)
05C63 Infinite graphs
05C60 Isomorphism problems in graph theory (reconstruction conjecture, etc.) and homomorphisms (subgraph embedding, etc.)
05C12 Distance in graphs

Keywords: k-distance transitive graph; distance transitive graph; infinite graph of connectivity 1

Full Text: DOI arXiv Link

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.