For natural numbers \(n \) and \(k \), the rainbow Ramsey theorem (RRT\(^n_k\)) states that if \(f : [\mathbb{N}]^n \to \mathbb{N} \) satisfies \(|f^{-1}(c)| \leq k \) for each \(c \), then there is an infinite set \(R \) such that \(f \) is injective on \([R]^n\). \(R \) is called a rainbow for \(f \). The central results of this paper analyze the strength of RRT\(^3_2\) in the framework of reverse mathematics, showing that RCA\(_0\) + RRT\(^3_2\) implies neither WKL\(_0\) nor RRT\(^4_2\). Computability-theoretic results on cohesive sets are used in the proofs. The results here sharpen the main result of the author’s earlier related paper [J. Symb. Log. 78, No. 3, 824–836 (2013; Zbl 1300.03013)].

Reviewer: Jeffry L. Hirst (Boone)

MSC:

03B30 Foundations of classical theories (including reverse mathematics)
03F35 Second- and higher-order arithmetic and fragments
03D55 Hierarchies of computability and definability
03D80 Applications of computability and recursion theory
05D10 Ramsey theory

Keywords:

reverse mathematics; Ramsey’s theorem; rainbow Ramsey theorem; cohesive set; weak König’s lemma; WKL

Full Text: DOI arXiv

References:

[7] Liu, Jiayi, $\forall \operatorname{operatorname{RT}}_2^2 \forall \operatorname{operatorname{WKL}}_0$ does not imply $\forall \operatorname{operatorname{RT}}_2^2$, J. Symbolic Logic, 77, 2, 609-620, (2012) · Zbl 1245.03095
[8] Liu, Jiayi, $\forall \operatorname{operatorname{RT}}_2^2 \forall \operatorname{operatorname{WKL}}_0$ does not imply $\forall \operatorname{operatorname{RT}}_2^2$, J. Symbolic Logic, 77, 2, 609-620, (2012) · Zbl 1245.03005

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.