Guerboussa, Yassine; Daoud, Bounabi
Adjoint groups of p-nil rings and p-group automorphisms. (English) [Zbl 1302.20027]

Let N be an Abelian normal subgroup of the group G. H. Laue [J. Algebra 96, 532-547 (1985; Zbl 0573.20028)] proved that there is an isomorphism between the monoid $\text{End}_N(G)$ of the endomorphisms of G that leave N invariant, and induce the identity on G/N, and the adjoint monoid of the ring $\text{Der}(G, N)$. The latter set consists of the derivations of G into N, and becomes a ring under addition and composition; the adjoint monoid has as operation the circle $x \circ y = x + y + xy$.

Laue’s result has proved very useful in investigating automorphisms of groups, in particular finite p-groups. The paper under review follows up Laue’s ideas. The authors define a ring R to be left (right) p-nil, where p is an odd prime, if every element of additive order p is a left (right) annihilator. They show among others that the power structure of the adjoint group of a left or right p-nil ring is very close to that of the additive group of the ring. They then apply their results to the study of automorphism groups of finite p-groups. A typical result is that if G is a finite p-group in which the center is contained in the Frattini subgroup, then the group of central automorphisms, that is, those automorphisms that induce the identity on the central quotient $G/Z(G)$, has nilpotence class at most $\min\{r, s\}$, where p^r is the exponent of the Abelianization G/G', and p^s is the exponent of the center.

Reviewer: Andrea Caranti (Trento)

MSC:
20D45 Automorphisms of abstract finite groups
16N20 Jacobson radical, quasimultiplication
20D15 Finite nilpotent groups, p-groups

Keywords:
nilpotent rings; adjoint groups; finite p-groups; central automorphisms; right p-nil rings; automorphism groups

Full Text: arXiv Euclid