Kostomarov, D. P.; Zaitsev, F. S.; Suchkov, E. P.; Bogdanov, P. B.
Solution of inverse problems by the \(\varepsilon \)-net method on high-performance computers. (English. Russian original) [Zbl 1302.82138]

Summary: In many applications, there arises the necessity of solving ill-posed problems. Such problems play a particularly important role in the problem of controlled thermonuclear fusion (CTF), because high temperatures prevent measurements directly inside plasma.

Algorithms for parallelizing the \(\varepsilon \)-net method for solving inverse problems of plasma diagnostics involved in controlled fusion on CPU and hybrid GPGPU-based architectures are presented. Computation time, acceleration, and efficiency of these algorithms for systems based on the MPI and OpenCL technologies are estimated.

MSC:
82D75 Nuclear reactor theory; neutron transport
35R30 Inverse problems for PDEs
65Y05 Parallel numerical computation
65Y10 Numerical algorithms for specific classes of architectures
82D10 Statistical mechanics of plasmas
93B52 Feedback control

Keywords: thermonuclear fusion; plasma diagnostics; graphic accelerators (GPGPU); MPI/OpenMP; parallel computation

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.