Gateva-Ivanova, Tatiana; Fløystad, Gunnar
Monomial algebras defined by Lyndon words. (English) [Zbl 1310.16018]

D. J. Anick studied a class of monomial algebras with finite global dimension [Trans. Am. Math. Soc. 291, 291-310 (1985; Zbl 0575.16002); ibid. 296, 641-659 (1986; Zbl 0598.16028)]. This paper is a further study of graded associative algebras for which the set of obstructions consists of Lyndon words.

Let \(X = \{x_1, \ldots, x_g\} \) be a finite alphabet and \(K \) a field. The authors study monomial algebras \(A = K\langle X \rangle / (W) \), where \(W \) is an antichain of Lyndon words in \(X \) of arbitrary cardinality. The authors establish a Poincaré-Birkhoff-Witt type basis of \(A \) in terms of its Lyndon atoms \(N \); in general, \(N \) may be infinite.

The authors prove that if \(A \) has polynomial growth of degree \(d \) then \(A \) has global dimension \(d \) and is standard finitely presented, with \(d - 1 \leq |W| \leq d(d - 1)/2 \). Furthermore, \(A \) has polynomial growth iff the set of Lyndon atoms \(N \) is finite. In this case \(A \) has a \(K \)-basis \(\mathcal{N} = \{l_1^{\alpha_1}l_2^{\alpha_2} \cdots l_d^{\alpha_d} | \alpha_i \geq 0, 1 \leq i \leq d\} \). The authors also construct an extremal class of monomial algebras, called the Fibonacci-Lyndon algebras, \(F_n \), with global dimension \(n \) and of polynomial growth and uniquely determined up to isomorphism. The authors prove that the algebra \(F_6 \) of global dimension 6 cannot be deformed, keeping the multigrading, to an Artin-Schelter regular algebra.

Reviewer: Victor Petrogradsky (Brasilia)

MSC:
16P90 Growth rate, Gelfand-Kirillov dimension
16S15 Finite generation, finite presentability, normal forms (diamond lemma, term-rewriting)
68R15 Combinatorics on words
16W50 Graded rings and modules (associative rings and algebras)
16E10 Homological dimension in associative algebras
16Z05 Computational aspects of associative rings (general theory)

Keywords:
Lyndon words; monomial algebras; algebras of polynomial growth; global dimension; Artin-Schelter regular algebras; graded algebras; Poincaré-Birkhoff-Witt bases

Full Text: DOI arXiv

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.