Bartolucci, Daniele

A sup+inf inequality for Liouville type equations with weights. (English) Zbl 1310.35133

Summary: We generalize a result by H. Brézis et al. [J. Funct. Anal. 115, No. 2, 344-358 (1993; Zbl 0794.35048)] and obtain an Harnack type inequality for solutions of $-\Delta u = |x|^{2\alpha} V e^u$ in Ω for $\Omega \subset \mathbb{R}^2$ open, $\alpha \in (1,0)$ and V any Lipschitz continuous function satisfying $0 < a \leq V \leq b < \infty$ and $\|\nabla V\|_{\infty} \leq A$.

MSC:

35J91 Semilinear elliptic equations with Laplacian, bi-Laplacian or poly-Laplacian
35B65 Smoothness and regularity of solutions to PDEs
35B45 A priori estimates in context of PDEs

References:

Full Text: DOI

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.