Restrictions of Brownian motion. (Restrictions du mouvement brownien.)

Let \(\{B(t) : 0 \leq t \leq 1\} \) be a linear Brownian motion and let \(\dim \) denote the Hausdorff dimension. Let \(\alpha > \frac{1}{2} \) and \(1 \leq \beta \leq 2 \). We prove that, almost surely, there exists no set \(A \subset [0,1] \) such that \(\dim A > \frac{1}{2} \) and \(B : A \to \mathbb{R} \) is \(\alpha \)-Hölder continuous. The proof is an application of Kaufman’s dimension doubling theorem. As a corollary of the above theorem, we show that, almost surely, there exists no set \(A \subset [0,1] \) such that \(\dim A > \frac{\beta}{2} \) and \(B : A \to \mathbb{R} \) has finite \(\beta \)-variation. The zero set of \(B \) and a deterministic construction witness that the above theorems give the optimal dimensions.

MSC:
60J65 Brownian motion

Keywords:
Brownian motion; Hausdorff dimension; Hölder continuity

Full Text: DOI arXiv

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.