Given $F \in \{\mathbb{R}, \mathbb{C}\}$ and a positive integer n, denote by $P_n(F)$ the set of all $n \times n$ matrices with entries from F which are positive definite. The main result of this paper states that if $\phi : P_n(F) \to \mathbb{R}$ satisfies
\[\phi(YXY) = \phi(X) + 2\phi(Y), \quad X, Y \in P_n(F), \]
then there exists a function $l : (0, \infty) \to \mathbb{R}$ such that
\[l(xy) = l(x) + l(y), \quad x, y \in (0, \infty), \]
and
\[\phi(X) = l(\det X), \quad X \in P_n(F). \]

Reviewer: Krzysztof Ciepliński (Kraków)

MSC:
- 39B42 Matrix and operator functional equations
- 15A15 Determinants, permanents, traces, other special matrix functions

Keywords:
- Jordan triple mapping
- determinant
- logarithmic mapping
- positive definite matrix

Full Text: DOI

References:
[4] Dobovišek, M., Maps from $\mathbb{M}_n(\mathbb{F})$ to \mathbb{F} that are multiplicative with respect to the Jordan triple product, Publ. Math. Debrecen, 73, 89-100, (2008) - Zbl 1265.15016

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.