Ben-Ameur, W.; Pióro, M.; Żotkiewicz, M.
Fractional routing using pairs of failure-disjoint paths. (English) Zbl 1326.90011

Summary: Given a set of commodities and a network where some arcs can fail while others are reliable, we consider a routing problem with respect to a survivability requirement that each commodity can be split among pairs of failure-disjoint paths. Two paths p and p' form a pair of failure-disjoint paths if they share only reliable arcs. The same flow is sent over p and p', but the flow sent on a common reliable arc is not doubled.

We present a compact linear formulation of the problem. Also three non-compact formulations solvable by column generation are introduced. In the first formulation, the generated columns correspond to pairs of failure-disjoint paths, while in the second formulation the generated columns correspond to simple paths. The third formulation is solved by generating pairs of arc-disjoint paths. All formulations are compared numerically. On top of that we study some generalizations and some special cases of the problem of computing a shortest pair of failure-disjoint paths. One of these generalizations is equivalent to a single-commodity capacitated network design problem.

MSC:

90B15 Stochastic network models in operations research
90B25 Reliability, availability, maintenance, inspection in operations research
90C35 Programming involving graphs or networks

Keywords:
shortest paths; disjoint paths; compact formulations; column generation; capacitated network design

Software:

CPLEX; SNDlib

Full Text: DOI

References:

[17] Pióro, M.; Medhi, D., Routing, flow, and capacity design in communication and computer networks, (2004), Morgan Kaufman San Francisco, CA, USA · Zbl 1069.68021

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.