Zhang, Yanbo; Broersma, Hajo; Chen, Yaojun

Three results on cycle-wheel Ramsey numbers. (English) Zbl 1327.05232
Graphs Comb. 31, No. 6, 2467-2479 (2015).

Summary: Given two graphs G_1 and G_2, the Ramsey number $R(G_1, G_2)$ is the smallest integer N such that, for any graph G of order N, either G_1 is a subgraph of G, or G_2 is a subgraph of the complement of G. We consider the case that G_1 is a cycle and G_2 is a (generalized) wheel. We expand the knowledge on exact values of Ramsey numbers in three directions: large cycles versus wheels of odd order; large wheels versus cycles of even order; and large cycles versus generalized odd wheels.

MSC:

05C55 Generalized Ramsey theory
05C38 Paths and cycles

Keywords:

Ramsey number; cycle; wheel

Full Text: DOI

References:

[8] Chen, YJ; Cheng, TCE; Ng, CT; Zhang, YQ, A theorem on cycle-wheel Ramsey number, Discret. Math., 312, 1059-1061, (2012) - Zbl 1237.05131

Edited by FIZ Karlsruhe, the European Mathematical Society and the Heidelberg Academy of Sciences and Humanities
© 2022 FIZ Karlsruhe GmbH

[29] Zhang, YB; Broersma, HJ; Chen, YJ, A remark on star-\mathbb{C}_4 and wheel-\mathbb{C}_4 Ramsey numbers, Electron. J. Graph Theory Appl., 2, 110-114, (2014) · Zbl 1306.05152 · doi:10.5614/ejgta.2014.2.2.3

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.