Hezari, Hamid; Sogge, Christopher D.
A natural lower bound for the size of nodal sets. (English) Zbl 1329.35224

Summary: We prove that, for an n-dimensional compact Riemannian manifold (M,g), the $(n-1)$-
dimensional Hausdorff measure $|Z_\lambda|$ of the zero-set Z_λ of an eigenfunction e_λ of the Laplacian having
eigenvalue $-\lambda$, where $\lambda \geq 1$, and normalized by $\int_M |e_\lambda|^2 dV_g = 1$ satisfies

$$C|Z_\lambda| \geq \lambda^{\frac{n}{2}} \left(\int_M |e_\lambda|^2 dV_g \right)^2$$

for some uniform constant C. As a consequence, we recover the lower bound $|Z_\lambda| \geq \lambda^{(3-n)/4}$.

MSC:
35P15 Estimates of eigenvalues in context of PDEs
35R01 PDEs on manifolds
58C40 Spectral theory; eigenvalue problems on manifolds

Keywords:
eigenfunctions; nodal lines

Full Text: DOI arXiv Link