Mao, Linfan

Geometry on non-solvable equations. A review on contradictory systems. (English)
Zbl 1331.35010

From the abstract: Beginning from a famous fable, i.e., the 6 blind men with an elephant, this report shows the geometry on contradictory systems, including non-solvable algebraic linear or homogenous equations, non-solvable ordinary differential equations and non-solvable partial differential equations, classify such systems and characterize their global behaviors by combinatorial geometry, particularly, the global stability of non-solvable differential equations. Applications of such systems to other sciences, such as those of gravitational fields, ecologically industrial systems can be also found in this report. All of these discussions show that a non-solvable system is nothing else but a system underlying a topological graph $G \not\cong K_n$, or $\cong K_n$ without common intersection, contrast to those of solvable systems underlying K_n being with common non-empty intersections, where n is the number of equations in this system. However, if we stand on a geometrical viewpoint, they are compatible and both of them are meaningful for human beings.

MSC:
35A01 Existence problems for PDEs: global existence, local existence, non-existence
05C15 Coloring of graphs and hypergraphs
20A05 Axiomatics and elementary properties of groups
34A26 Geometric methods in ordinary differential equations
51A05 General theory of linear incidence geometry and projective geometries
51D20 Combinatorial geometries and geometric closure systems
53A35 Non-Euclidean differential geometry

Keywords:
Smarandache system; non-solvable system of equations; topological graph; G^L-solution