Huang, Chien-Chung; Kavitha, Telikepalli

Popular matchings in the stable marriage problem. (English) Zbl 1334.05168

Summary: The input is a bipartite graph \(G = (A \cup B, E) \) where each vertex \(u \in A \cup B \) ranks its neighbors in a strict order of preference. A matching \(M^* \) is said to be popular if there is no matching \(M \) such that more vertices are better off in \(M \) than in \(M^* \). We consider the problem of computing a maximum cardinality popular matching in \(G \). It is known that popular matchings always exist in such an instance \(G \), however the complexity of computing a maximum cardinality popular matching was not known so far. In this paper we give a simple characterization of popular matchings when preference lists are strict and a sufficient condition for a maximum cardinality popular matching. We then show an \(O(mn_0) \) algorithm for computing a maximum cardinality popular matching in \(G \), where \(m = |E| \) and \(n_0 = \min(|A|, |B|) \).

For the entire collection see [Zbl 1217.68003].

MSC:
05C85 Graph algorithms (graph-theoretic aspects)
05C70 Edge subsets with special properties (factorization, matching, partitioning, covering and packing, etc.)
91B68 Matching models

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.