Anjos, Miguel F.; Liers, Frauke
Global approaches for facility layout and VLSI floorplanning. (English)

Summary: This chapter provides an overview of conic optimization models for facility layout and VLSI floorplanning problems. We focus on two classes of problems to which conic optimization approaches have been successfully applied, namely the single-row facility layout problem, and fixed-outline floorplanning in VLSI circuit design. For the former, a close connection to the cut polytope has been exploited in positive semidefinite and integer programming approaches. In particular, the semidefinite optimization approaches can provide global optimal solutions for instances with up to 40 facilities, and tight global bounds for instances with up to 100 facilities. For the floorplanning problem, a conic optimization model provided the first non-trivial lower bounds in the literature.

For the entire collection see [Zbl 1235.90002].

MSC:

90C22 Semidefinite programming
68W35 Hardware implementations of nonnumerical algorithms (VLSI algorithms, etc.)

Software:
CSDP; LLOLIB

Full Text: DOI Link

References:
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.

Edited by FIZ Karlsruhe, the European Mathematical Society and the Heidelberg Academy of Sciences and Humanities
© 2023 FIZ Karlsruhe GmbH