Uniformly resolvable decompositions of K_v into K_2 and $K_{1,3}$ graphs.

Summary: Let K_v be the complete graph of order v. A $(K_2, K_{1,3})$-URD($v; r, s$) is a decomposition of K_v into a set of subgraphs which can be partitioned into r parallel classes containing only copies of K_2 and s parallel classes containing only copies of $K_{1,3}$, such that every point of K_v appears exactly once in some subgraphs of each parallel class. S. Küçükçifçi et al. have completely solved the existence of a $(K_2, K_{1,3})$-URD($v; r, s$) with minimum number of 1-factors and with 14 possible exceptions. In this paper, we shall give some new constructions for $(K_2, K_{1,3})$-URDs, and completely solve the existence of a $(K_2, K_{1,3})$-URD($v; r, s$) for any admissible parameters v, r and s.

MSC: 05C70

Keywords: resolvable graph decomposition; uniform parallel class; frame; 3-star

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original
paper as accurately as possible without claiming the completeness or perfect precision of the matching.