Szablikowski, Błażej M.
Hierarchies of Manakov-Santini type by means of Rota-Baxter and other identities. (English) Zbl 1343.37068

Summary: The Lax-Sato approach to the hierarchies of Manakov-Santini type is formalized in order to extend it to a more general class of integrable systems. For this purpose some linear operators are introduced, which must satisfy some integrability conditions, one of them is the Rota-Baxter identity. The theory is illustrated by means of the algebra of Laurent series, the related hierarchies are classified and examples, also new, of Manakov-Santini type systems are constructed, including those that are related to the dispersionless modified Kadomtsev-Petviashvili equation and so called dispersionless r-th systems.

MSC: 37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.) 37K30 Relations of infinite-dimensional Hamiltonian and Lagrangian dynamical systems with infinite-dimensional Lie algebras and other algebraic structures

Keywords: Manakov-Santini hierarchy; Rota-Baxter identity; classical r-matrix formalism; generalized Lax hierarchies; integrable (2 + 1)-dimensional systems

Full Text: DOI arXiv

References:
[12] Guo, Li, What is \(\{ ((\ldots \nabla \ldots))\} \) a \(R\)ota-\(B\)axter algebra?, Notices of the American Mathematical Society, 56, 11, 1436-1437, (2009) · Zbl 1181.16038

Mañas, Manuel, \(\{S\} \)-functions, reductions and hodograph solutions of the \(\{r\} \) th dispersionless modified \(\{KP\} \) and \(\{D\} \)ym hierarchies, *Journal of Physics. A. Mathematical and General*, 37, 46, 11191-11221, (2004) · Zbl 1070.35070 · doi:10.1088/0305-4470/37/46/007

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.