Attie, Paul C.; Lynch, Nancy A.
Dynamic input/output automata: a formal and compositional model for dynamic systems.
(English) Zbl 1344.68114

Summary: We present dynamic I/O automata (DIOA), a compositional model of dynamic systems. In DIOA, automata can be created and destroyed dynamically, as computation proceeds, and an automaton can dynamically change its signature, i.e., the set of actions in which it can participate.

DIOA features operators for parallel composition, action hiding, action renaming, a notion of automaton creation, and a notion of behavioral subtyping by means of trace inclusion. DIOA can model mobility, using signature modification, and is hierarchical: a dynamically changing system of interacting automata is itself modeled as a single automaton.

We also show that parallel composition, action hiding, action renaming, and (subject to some technical conditions) automaton creation are all monotonic with respect to trace inclusion: if one component is replaced by another whose traces are a subset of the former, then the set of traces of the system as a whole can only be reduced.

MSC:
68Q45 Formal languages and automata
68Q85 Models and methods for concurrent and distributed computing (process algebras, bisimulation, transition nets, etc.)

Keywords:
dynamic systems; formal methods; semantics; automata; process creation; mobility

Full Text: DOI

References:

[21] Luchangco, V., Memory consistency models for high performance distributed computing, (September 2001), Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology Cambridge, MA, 02139

[27] Milner, R., Communicating and mobile systems: the \textit{π}-calculus, (1999), Addison-Wesley Reading, Mass · Zbl 0942.68002

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.