Summary: In the general field of quantum information and computation, quantum walks are playing an increasingly important role in constructing physical models and quantum algorithms. We have recently developed a distributed memory software package \textit{pyCTQW}, with an object-oriented Python interface, that allows efficient simulation of large multi-particle CTQW (continuous-time quantum walk)-based systems. In this paper, we present an introduction to the Python and Fortran interfaces of \textit{pyCTQW}, discuss various numerical methods of calculating the matrix exponential, and demonstrate the performance behavior of \textit{pyCTQW} on a distributed memory cluster. In particular, the Chebyshev and Krylov-subspace methods for calculating the quantum walk propagation are provided, as well as methods for visualization and data analysis.

MSC:

- 81-04 Software, source code, etc. for problems pertaining to quantum theory
- 81-08 Computational methods for problems pertaining to quantum theory
- 81S25 Quantum stochastic calculus
- 81P45 Quantum information, communication, networks (quantum-theoretic aspects)

Keywords:
continuous-time quantum walk; multiple walkers; Padé approximant; Krylov subspace method; Chebyshev matrix expansion

Software:
F2PY; MATLAB \texttt{expm}; pyCTQW; PETSc; Expokit; SLEPc

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.