Summary: This paper concerns with the problem of synchronization of complex dynamical networks (CDNs) with discontinuous coupling signals which are kept constant during the sampling period and are allowed to change only at the sampling instant. Based on the time-dependent Lyapunov functional approach, convex combination technique, and multiple-integral method, a sampling interval-dependent criterion is derived for synchronization of CDNs with discontinuous coupling signals. Numerical examples are given to demonstrate the effectiveness of proposed method and the relation between conservatism of results and triple integral method.

MSC:
93A15 Large-scale systems
93C15 Control/observation systems governed by ordinary differential equations
34D06 Synchronization of solutions to ordinary differential equations
34C60 Qualitative investigation and simulation of ordinary differential equation models
37M05 Simulation of dynamical systems
37N35 Dynamical systems in control

Keywords:
complex dynamical networks; synchronization; sampled-data system; discontinuous coupling

Full Text: DOI

References:
[13] Yang, X; Cao, J; Lu, J, Stochastic synchronization of complex networks with nonidentical nodes via hybrid adaptive and

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.