De Philippis, Guido; Gigli, Nicola

From volume cone to metric cone in the nonsmooth setting. (English) Zbl 1356.53049

In Riemannian geometry, a volume cone is a Riemannian manifold such that the volume of metric balls $B(x, r)$ is proportional to r^n. On the other hand, one says that $B_R(x) \setminus B_r(x)$ is a metric cone if it is a warped product $(N \times [r, R], dt^2 + t^2 g_N)$ for some closed manifold (N, g_N). A tangent cone of a Riemannian manifold (M, g) means a Gromov-Hausdorff limit of $(M, r^{-2} g)$ for a sequence $r_j \to \infty$.

The volume comparison theorem for Riemannian manifolds M of nonnegative Ricci curvature asserts that the volume of metric balls $B_r(x)$ grows more slowly than the volume of metric balls in Euclidean space:

$$\frac{d}{dr} \left(\frac{\text{vol}(B_r(x) \subset M)}{\text{vol}(B_r \subset \mathbb{R}^n)} \right) \leq 0.$$

The equality case $\frac{d}{dr} \left(\frac{\text{vol}(B_r(x) \subset M)}{\text{vol}(B_r \subset \mathbb{R}^n)} \right) = 0$ means exactly that one has a volume cone and the rigidity part of the volume comparison theorem asserts that if a Riemannian manifold of nonpositive Ricci curvature is a volume cone, then it is a metric cone.

In [Ann. Math. (2) 144, No. 1, 189–237 (1996; Zbl 0865.53037)], J. Cheeger and T. H. Colding proved that a Riemannian manifold with $\text{Ric} \geq 0$ and almost maximal volume must be Gromov-Hausdorff close to a metric cone. In particular, if $\text{Ric} \geq 0$ and $\text{vol}(B, x, r) \geq c r^n$ for some $c > 0$, then each tangent cone is a metric cone.

The purpose of the paper under review is to generalize these results to the non-smooth setting, that is, to metric-measure spaces which have nonpositive Ricci curvature in a synthetic sense.

A natural setting for such a generalisation would have been the $CD(0, n)$ and $CD^*(0, n)$ spaces introduced by Lott-Villani and Bacher-Sturm. However, they include some Finsler geometries for which the wanted rigidity does not always hold. For this reason the authors restrict to a class of spaces called $RCD^*(0, n)$ which has been introduced by the second author [Mem. Am. Math. Soc. 1113, iii-v, 91 p. (2015; Zbl 1325.53054)] and can be characterised by a finite-dimensional Bochner inequality.

The main result of the paper is then that for a ball in a $RCD^*(0, n)$ space, being a volume cone implies being locally isometric to the cone over a ball in an $RCD^*(n-2, n-1)$ space. (There are two exceptional cases in which the ball is just 1-dimensional.) The consequences for tangent cones will be analyzed in subsequent papers.

Reviewer: Thilo Kuessner (Seoul)

MSC:

53C23 Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces
53C20 Global Riemannian geometry, including pinching

Keywords:

bounded Ricci curvature; rigidity theorems; warped product; metric geometry; optimal transport; RCD(0,N) condition; curvature-dimension conditions; volume comparison

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.