Summary: The k-Path problem asks whether a given undirected graph has a (simple) path of length k. We prove that k-PATH has polynomial-size Turing kernels when restricted to planar graphs, graphs of bounded degree, claw-free graphs, or to $K_{3,t}$-minor-free graphs. This means that there is an algorithm that, given a k-PATH instance (G, k) belonging to one of these graph classes, computes its answer in polynomial time when given access to an oracle that solves k-PATH instances of size polynomial in k in a single step. Our techniques also apply to k-Cycle, which asks for a cycle of length at least k.

MSC:

68Q25 Analysis of algorithms and problem complexity
05C38 Paths and cycles

Keywords:

parameterized complexity; Turing kernelization; k-Path; preprocessing

Software:

Algorithm 447

Full Text: DOI arXiv

References:

[15] Diestel, R., Graph theory, (2010), Springer-Verlag Heidelberg · Zbl 1204.05001

[27] Jansen, B. M.P., Turing kernelization for finding long paths and cycles in restricted graph classes, (2014), CoRR · Zbl 1245.68144

[28] Jansen, B. M.P.; Marx, D., Characterizing the easy-to-find subgraphs from the viewpoint of polynomial-time algorithms, kernels, and Turing kernels, (Proc. 26th SODA, (2015)), 616-629 · Zbl 1371.68212

[31] Lokshtanov, D., New methods in parameterized algorithms and complexity, (2009), University of Bergen Norway, PhD thesis

[35] Tutte, W. T., Connectivity in graphs. mathematical expositions, (1966), University of Toronto Press · Zbl 0146.45603

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.