For a given topological toric manifold M, someone is able to obtains its characteristic map, enabling the notation $M = M(K, \lambda)$. A characteristic map of dimension n is defined as the pair (K, λ) of a face complex K of dimension $\leq n - 1$ and a map $\lambda : V(K) \rightarrow \mathbb{Z}^n$ so that $\{\lambda(i) \mid i \in \sigma\}$ is a linearly independent set over \mathbb{R} for any face σ of K, where $V(K)$ is the vertex set of K. There is a classical operation of simplicial complexes which is called the simplicial wedge operation. In this operation from a simplicial complex K with m vertices and for a fixed vertex v, is defined a simplicial complex of $m + 1$ vertices, which is called the wedge of K at v and it is denoted by $\text{wedge}_v(K)$.

In their main result the authors prove the following: Let K be a fan-like simplicial sphere and v a given vertex of K. Let $(\text{wedge}_v(K), \lambda)$ be a characteristic map and let v_1 and v_2 be the two new vertices of $\text{wedge}_v(K)$ created from the wedging, where $\{\lambda(v_1), \lambda(v_2)\}$ is a unimodular set. Then λ is uniquely determined by the projections $\text{Proj}_{v_1}\lambda$ and $\text{Proj}_{v_2}\lambda$. In other words, they prove that in order to find all toric objects $(\text{wedge}_v(K), \mu)$ it suffices to determine all toric objects (K, λ).

In the second main part of the article, the authors complete the classification of toric manifolds and topological toric manifolds with Picard number at most three. We remind that if m is the number of rays of a complete non-singular fan of dimension n and K is the corresponding simplicial complex of dimension $n - 1$, then the Picard number of K is defined as $m - n$. They study several other applications which are occuring from the above results and from the techniques that they develop.

Reviewer: Christos Tatakis (Mitilini)

MSC:

14M25	Toric varieties, Newton polyhedra, Okounkov bodies
52B20	Lattice polytopes in convex geometry (including relations with commutative algebra and algebraic geometry)
52B35	Gale and other diagrams

Keywords:

toric variety; projective toric variety; Gale diagram; simplicial wedge; topological toric manifold; real topological toric manifold; quasitoric manifold; small cover; real toric variety

Software:

Convex

Full Text: DOI arXiv Euclid

References:
