Wang, Yi; Zhang, Hai-Xia; Zhu, Bao-Xuan

Summary: Let \(G \) be a simple graph with \(n \) vertices and let
\[
C(G; x) = \sum_{k=0}^{n} (-1)^{n-k} c(G,k) x^k
\]
denote the Laplacian characteristic polynomial of \(G \). Then if the size \(|E(G)| \) is large compared to the maximum degree \(\Delta(G) \), Laplacian coefficients \(c(G,k) \) are approximately normally distributed (by central and local limit theorems). We show that Laplacian coefficients of the paths, the cycles, the stars, the wheels and regular graphs of degree \(d \) are approximately normally distributed respectively. We also point out that Laplacian coefficients of the complete graphs and the complete bipartite graphs are approximately Poisson distributed respectively.

MSC:
05C31 Graph polynomials
05C07 Vertex degrees

Keywords:
Laplacian matrix; Laplacian coefficient; asymptotic normality; central limit theorem; local limit theorem

Full Text: DOI arXiv

References:
[15] Ruciński, A., The behaviour of $\sum_{k \leq n}{\binom{n}{k} x^k}$, \(x \in \mathbb{R} \), (1984) · Zbl 0548.05003

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.