Let M, N be two bracket-generating sub-Riemannian manifolds, and suppose that $F : M \to N$ is a (surjective) isometry of the control (Carnot-Carathéodory) distances. Must F be smooth with respect to the differentiable structures of the underlying manifolds of M, N, and hence be a diffeomorphism? The analogous statement for Riemannian manifolds is well known to be true, but the sub-Riemannian case is more difficult since, unlike the Riemannian distance, the control distance need not be smooth.

In this paper, the authors give a positive answer under the assumption that M, N are equiregular. Let $\Delta^1 = \Delta$ denote the horizontal distribution of M, and let $\Delta^{i+1} = [\Delta, \Delta^i]$. We say Δ is equiregular on an open set U if the dimension of Δ^i_p is independent of $p \in U$. As an immediate generalization of the result, it follows that an isometry $F : M \to N$ is smooth on any open set U on which the distribution of M is locally equiregular; in particular, there exists such U which is dense.

The proof proceeds in two steps which are of independent interest. First, the desired result is shown for general sub-Riemannian manifolds (not necessarily equiregular) under the additional hypothesis that there exist smooth volume forms $\text{vol}_M, \text{vol}_N$ on M, N such that the isometry F pushes forward vol_M to vol_N, i.e., $F_*\text{vol}_M = \text{vol}_N$. The smoothness of F can then be shown by a bootstrap argument based on subelliptic estimates for the sub-Laplacian. Second, it is shown that for equiregular sub-Riemannian manifolds, the canonical Popp volume forms satisfy this hypothesis; this is proved by relating the Popp measure to the spherical Hausdorff measure, where the latter depends only on the metric structure.

As a consequence, taking $N = M$, the authors show that if M is an equiregular sub-Riemannian manifold, then the isometry group of M is a finite-dimensional Lie group; moreover, for each compact subgroup K, there is a Riemannian extension g_K of the sub-Riemannian metric of M such that K embeds in the isometry group of the Riemannian manifold (M, g_K). This holds in particular when K is the group of isometries fixing a particular point $p \in M$.

Another corollary is that if M, N are equiregular and connected and a point $p \in M$ is fixed, then any isometry $F : M \to N$ is uniquely determined by the value of $F(p)$ and the action of the differential dF on the horizontal space Δ_p at p.

Reviewer: Nathaniel Eldredge (Greeley)

MSC:

53C17 Sub-Riemannian geometry
35H10 Hypoelliptic equations
35H20 Subelliptic equations
22E25 Nilpotent and solvable Lie groups
28A75 Length, area, volume, other geometric measure theory

Keywords:

sub-Riemannian manifolds; isometry; Popp measure; control distance; nilpotent approximation

Full Text: DOI arXiv