Summary: This article focuses on the maximum of relative projection constants over all \(m \)-dimensional subspaces of the \(N \)-dimensional coordinate space equipped with the max-norm. This quantity, called maximal relative projection constant, is studied in parallel with a lower bound, dubbed quasimaximal relative projection constant. Exploiting alternative expressions for these quantities, we show how they can be computed when \(N \) is small and how to reverse the Kadec-Snobar inequality when \(N \) does not tend to infinity. Precisely, we first prove that the (quasi)maximal relative projection constant can be lower-bounded by \(c\sqrt{m} \), with \(c \) arbitrarily close to one, when \(N \) is superlinear in \(m \). The main ingredient is a connection with equiangular tight frames. By using the semicircle law, we then prove that the lower bound \(c\sqrt{m} \) holds with \(c < 1 \) when \(N \) is linear in \(m \).

MSC:

- 46B07 Local theory of Banach spaces
- 46B04 Isometric theory of Banach spaces
- 52A21 Convexity and finite-dimensional Banach spaces (including special norms, zonoids, etc.) (aspects of convex geometry)

Keywords:

- projection constants
- Seidel matrices
- tight frames
- equiangular lines
- graphs
- semicircle law

Software:

- Traces; nauty

Full Text: DOI

References:

13, 1, 41-45, (1992) · Zbl 0747.15005

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.