dos Santos Souza, Uéverton; Protti, Fábio
Tractability, hardness, and kernelization lower bound for and/or graph solution. (English)
Zbl 1372.05224

Summary: And/or graphs are well-known data structures with several applications in many fields of computer science, such as Artificial Intelligence, Distributed Systems, Software Engineering, and Operations Research. An and/or graph is an acyclic digraph G containing a single source vertex s, where every vertex $v \in V(G)$ has a label $f(v) \in \{\text{and}, \text{or}\}$. In an and/or graph, (weighted) edges represent dependency relations between vertices: a vertex labeled and depends on all of its out-neighbors, while a vertex labeled or depends on only one of its out-neighbors. A solution subgraph H of an and/or graph G is a subdigraph of G containing its source vertex and such that if an and-vertex (resp. or-vertex) is included in H then all (resp. one) of its out-edges must also be included in H. In general, solution subgraphs represent feasible solutions of problems modeled by and/or graphs. The optimization problem associated with an and/or graph G consists of finding a minimum weight solution subgraph H of G, where the weight of a solution subgraph is the sum of the weights of its edges. Because of its wide applicability, in this work we develop a multivariate investigation of this optimization problem. In a previous paper [U. dos Santos Souza et al., J. Comput. Syst. Sci. 79, No. 7, 1156–1163 (2013; Zbl 1311.68078)] we have analyzed the complexity of such a problem under various aspects, including parameterized versions of it. However, the main open question has remained open: Is the problem of finding a solution subgraph of weight at most k (where k is the parameter) in FPT?

In this paper we answer negatively to this question, proving the W[1]-hardness of the problem, and its W[P]-completeness when zero-weight edges are allowed. We also show that the problem is fixed-parameter tractable when parameterized by the tree-width, but it is W[2]-hard with respect to the clique-width and k as aggregated parameters. In addition, we show that when the out-edges of each or-vertex have all the same weight (a condition very common in practice), the problem becomes fixed-parameter tractable by the clique-width. Finally, using a framework developed by H. L. Bodlaender et al. [J. Comput. Syst. Sci. 75, No. 8, 423–434 (2009; Zbl 1192.68288)] and L. Fortnow and R. Santhanam [J. Comput. Syst. Sci. 77, No. 1, 91–106 (2011; Zbl 1233.68144)], based upon the notion of compositionality, we show that the tractable cases do not admit a polynomial kernel unless $NP \subseteq \text{coNP/poly}$, even restricted to instances without or-vertices with out-degree greater than two.

MSC:
05C99 Graph theory
68R10 Graph theory (including graph drawing) in computer science
68P05 Data structures
68Q15 Complexity classes (hierarchies, relations among complexity classes, etc.)

Keywords:
and/or graphs; W[1]-complete; W[1]-hard; FPT; tree-width; clique-width

Full Text: DOI

References:

[16] Diestel, R., Graph Theory, (2005), Springer

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.