Compagnoni, Marco; Notari, Roberto; Antonacci, Fabio; Sarti, Augusto

On the statistical model of source localization based on range difference measurements. (English) Zbl 1373.93320

Summary: In this work we study the statistical model of source localization based on range difference measurements, under the assumption of Gaussian noise on the data. Our analysis is based on a previous work of the same authors concerning the localization in a noiseless scenario. We investigate the case of planar localization of a source using a minimal configuration of three non aligned receivers. We have four curved exponential families corresponding to four different, non disjoint, regions of the feasible set. For each family we solve Maximum Likelihood Estimation (MLE). This requires to find the projection of a point on a set of segments and arcs of ellipse. Then, we perform the analytic study of the localization accuracy. In particular, we give formulas for mean square error and bias of MLE, depending on the displacement vectors. We validate the results through Monte Carlo simulations, in a given setup of the receivers. As the set of feasible measurements is a semialgebraic variety, this investigation makes use of techniques from Algebraic Statistics and Information Geometry.

MSC:
93E10 Estimation and detection in stochastic control theory
93A30 Mathematical modelling of systems (MSC2010)
93E03 Stochastic systems in control theory (general)

Keywords:
statistical model; source localization; range difference measurements; Gaussian noise; maximum likelihood estimation (MLE)

Software:
PHCpack; Bertini; mctoolbox

Full Text: DOI arXiv

References:
[12] Spencer, S., Closed-form analytical solutions of the time difference of arrival source location problem for minimal element
Velasco, J.; Pizarro, D.; Macías-Guarasa, J.; Asaei, A., TDOA matrices: algebraic properties and their application to robust
Draisma, J.; Horobet, E.; Ottaviani, G.; Sturmfels, B.; Thomas, R., The Euclidean distance degree of an algebraic variety,
Schicho, J.; Gallet, M., Ambiguities in a problem in planar geodesy, Symmetry Integrability Geometry Methods Appl., 11,
008,1-13, (2015) - Zbl 1316.14103
Velasco, J.; Pizarro, D.; Macías-Guarasa, J.; Asaei, A., TDOA matrices: algebraic properties and their application to robust
Amari, S.; Nagaoka, H., Methods of information geometry, (2000), American Mathematical Society
Cheng, Y.; Wang, X.; Morelande, M.; Moran, B., Information geometry of target tracking sensor networks, Inf. Fusion, 14,
3, 311-326, (2013)
Ho, K. C., Bias reduction for an explicit solution of source localization using TDOA, IEEE Trans. Signal Process., 60, 5,
2101-2114, (2012) - Zbl 1293.94568
Hahn, W.; Tretter, S., Optimum processing for delay-vector estimation in passive signal arrays, IEEE Trans. Inf. Theory, 19,
5, 608-614, (1973) - Zbl 0273.94003

[51] W. Decker, G.-M. Greuel, G. Pfister, H. Schönemann, \texttt{\textbackslash \textbackslash }S\textbackslash e\textbackslash Singular\textbackslash \textbackslash \textbackslash 4-1-0} - a computer algebra system for polynomial computations, 2016, (http://www.singular.uni-kl.de).

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.