Akitaya, Hugo A.; Demaine, Erik D.; Demaine, Martin L.; Hesterberg, Adam; Hurtado, Ferran; Ku, Jason S.; Lynch, Jayson

Pachinko. (English) Zbl 1380.05188

Summary: Inspired by the Japanese game Pachinko, we study simple (perfectly “inelastic” collisions) dynamics of a unit ball falling amidst point obstacles (pins) in the plane. A classic example is that a checkerboard grid of pins produces the binomial distribution, but what probability distributions result from different pin placements? In the 50-50 model, where the pins form a subset of this grid, not all probability distributions are possible, but surprisingly the uniform distribution is possible for \(\{1, 2, 4, 8, 16\} \) possible drop locations. Furthermore, every probability distribution can be approximated arbitrarily closely, and every dyadic probability distribution can be divided by a suitable power of 2 and then constructed exactly (along with extra “junk” outputs). In a more general model, if a ball hits a pin off center, it falls left or right accordingly. Then we prove a universality result: any distribution of \(n \) dyadic probabilities, each specified by \(k \) bits, can be constructed using \(O(nk^2) \) pins, which is close to the information-theoretic lower bound of \(\Omega(nk) \).

MSC:
05C99 Graph theory

Keywords:
Pachinko; probability distributions

Full Text: DOI arXiv Link

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.