Summary: We define “BPS graphs” on punctured Riemann surfaces associated with A_{N-1} theories of class S. BPS graphs provide a bridge between two powerful frameworks for studying the spectrum of BPS states: spectral networks and BPS quivers. They arise from degenerate spectral networks at maximal intersections of walls of marginal stability on the Coulomb branch. While the BPS spectrum is ill-defined at such intersections, a BPS graph captures a useful basis of elementary BPS states. The topology of a BPS graph encodes a BPS quiver, even for higher-rank theories and for theories with certain partial punctures. BPS graphs lead to a geometric realization of the combinatorics of Fock-Goncharov N-triangulations and generalize them in several ways.

MSC:
81T60 Supersymmetric field theories in quantum mechanics
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory

Keywords:
extended supersymmetry; supersymmetric gauge theory; p-branes; M-theory

Full Text: DOI arXiv

References:
Zbl 1384.81071

Y. Terashima and M. Yamazaki, 3\text{d N} = 2 \text{Theories from Cluster Algebras}, \text{PTEP} \text{vol}(2014) 023B01 [arXiv:1301.5902] [INSPIRE].

M. Mulase and M. Penkava, "Ribbon Graphs, Quadratic Differentials on Riemann Surfaces, and Algebraic Curves Defined over \overline{Q}", math-ph/9811024. - Zbl 0964.30023

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.