Ciesielski, Maciej; Lewicki, Grzegorz

Uniform K-monotonicity and K-order continuity in symmetric spaces with application to approximation theory. (English) Zbl 1387.41013

Summary: We investigate K-order continuity in a symmetric space E using the fundamental function ϕ of E. We also show a connection between reflexivity and K-order continuity in symmetric spaces. Next, we present several results devoted to a characterization of uniform K-monotonicity and decreasing (increasing) uniform K-monotonicity in symmetric spaces. We also discuss a relationship between decreasing (resp. increasing) uniform monotonicity and decreasing (resp. increasing) uniform K-monotonicity. Finally, employing K-monotonicity properties and K-order continuity we provide solvability and stability of the best approximation problem in the sense of the Hardy-Littlewood-Pólya relation \prec in symmetric spaces.

MSC:

41A50 Best approximation, Chebyshev systems
46B20 Geometry and structure of normed linear spaces
47H05 Monotone operators and generalizations

Keywords:
uniform K-monotonicity; K-order continuity; strict K-monotonicity; Lorentz space; symmetric space; the best approximation operator

Full Text: DOI

References:

Ciesielski, M.; Lewicki, G., Best approximation properties in spaces of measurable functions, preprint of 26 pages submitted on 9 July 2017 at

Kamińska, A.; Maligranda, L., Order convexity and concavity of Lorentz spaces \(\Lambda_{p, w} \), \(0 < p < \infty \), Studia Math., 160, 3, 267-286, (2004) · Zbl 1057.46026

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.