Papageorgiou, Nikolaos S.; Vetro, Calogero; Vetro, Francesca
Multiple nodal solutions for semilinear Robin problems with indefinite linear part and concave terms. (English) [Zbl 1390.35094]

Given a bounded domain $\Omega \subseteq \mathbb{R}^N$ with a C^2-boundary $\partial\Omega$, the authors study the following semilinear Robin problem

$$\begin{align*}
-\Delta u(z) + \xi(z)u(z) &= \vartheta(z)|u(z)|^{q-2}u(z) + f(z,u(z)) \quad \text{in} \quad \Omega, \\
\frac{\partial u}{\partial n} + \beta(z)u &= 0 \quad \text{on} \quad \partial\Omega,
\end{align*}$$

where $1 < q < 2$, $\xi \in L^s(\Omega)$ with $s > N$ being sign-changing, $\vartheta \in L^\infty(\Omega)$, $\vartheta(z) > 0$ for almost all $z \in \Omega$ and $f : \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function of arbitrary growth. By applying a variant of the symmetric mountain pass theorem, the authors show the existence of smooth nodal (i.e., sign-changing) solutions which converge to zero in $C^1(\Omega)$. Furthermore, if the coefficient of the concave term (that is, $\vartheta(z)|u(z)|^{q-2}u(z)$) is sign changing, then it is shown again the existence of a sequence of smooth solutions converging to zero in $C^1(\Omega)$ but without any knowledge about the sign.

Reviewer: Patrick Winkert (Berlin)

MSC:
35J61 Semilinear elliptic equations
35J20 Variational methods for second-order elliptic equations

Keywords:
semilinear Robin problem; indefinite potential; smooth nodal solutions

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.