Castelli, Roberto
The monotonicity of the apsidal angle in power-law potential systems. (English)
Zbl 1391.70037

Summary: In a central force system the apsidal angle is the angle at the centre of force between two
consecutive apsides and measures the precession rate of the line of apsis. The apsidal angle has applications
in different fields and Newton’s apsidal precession theorem has been extensively studied by astronomers,
physicist and mathematicians. The perihelion precession of Mercury, the dynamics of galaxies, the vortex
dynamics, the JWKB quantisation condition are some examples where the apsidal angle is of interest. In
case of eccentric orbits and forces far from inverse square, numerical investigations provide evidence of
the monotonicity of the apsidal angle with respect to the orbit parameters, such as the orbit eccentricity.
However, no proof of this statement is available. In this paper central force systems with
\[f(r) \sim \mu r^{-\alpha-1} \]
are considered. We prove that for any \(-2 < \alpha < 1\) the apsidal angle is a monotonic function of the orbital
eccentricity, or equivalently of the angular momentum. As a corollary, the conjecture stating the absence
of isolated cases of zero precession is proved.

MSC:
70F15 Celestial mechanics

Keywords:
central force systems; homogeneous potential; precession rate; monotonicity of the apsidal angle; two-body
problem

Software:
INTLAB

Full Text: DOI arXiv

References:
413, 2, 727-751, (2014) · Zbl 1308.70007
[5] Castelli, R.; Paparella, F.; Portaluri, A., Singular dynamics under a weak potential on a sphere, NoDEA Nonlinear Differential

[16] Newcomb, S., Discussion and results of observations on transits of Mercury from 1677 to 1881, Astron. Pap., 1, 363-487, (1882)

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.