Zhu, Bao-Xuan

q-log-convexity from linear transformations and polynomials with only real zeros. (English)

Summary: In this paper, we mainly study the stability of iterated polynomials and linear transformations preserving the strong q-log-convexity of polynomials.

Let $[T_{n,k}]_{n,k \geq 0}$ be an array of nonnegative numbers. We give some criteria for the linear transformation

$$y_n(q) = \sum_{k=0}^{n} T_{n,k}x_k(q)$$

The stability property of iterated polynomials implies the q-log-convexity. By applying the method of interlacing of zeros, we also present two criteria for the stability of the iterated Sturm sequences and q-log-convexity of polynomials. As consequences, we get the stabilites of iterated Eulerian polynomials of types A and B, and their q-analogs. In addition, we also prove that the generating functions of alternating runs of types A and B, the longest alternating subsequence and up-down runs of permutations form a q-log-convex sequence, respectively.

MSC:

05A15 Exact enumeration problems, generating functions
05A05 Permutations, words, matrices
05A20 Combinatorial inequalities
12D10 Polynomials in real and complex fields: location of zeros (algebraic theorems)
11B83 Special sequences and polynomials

Software:

OEIS

Full Text: DOI arXiv

References:

Brenti, F., q-ϕ-Eulerian polynomials arising from Coxeter groups, European J. Combin., 15, 417-441, (1994) · Zbl 0809.050012

Edited by FIZ Karlsruhe, the European Mathematical Society and the Heidelberg Academy of Sciences and Humanities
© 2023 FIZ Karlsruhe GmbH

Zhao, A. F.Y., The combinatorics on permutations and derangements of type SB, (2011), Nankai University, Ph.D dissertation

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.