Strzeboński, Adam; Tsigaridas, Elias P.
Univariate real root isolation over a single logarithmic extension of real algebraic numbers. (English) Zbl 1393.11086

Summary: We present algorithmic, complexity, and implementation results for the problem of isolating the real roots of a univariate polynomial $B \in L[x]$, where $L = \mathbb{Q}[\lg(\alpha)]$ and α is a positive real algebraic number. The algorithm approximates the coefficients of B up to a sufficient accuracy and then solves the approximate polynomial. For this we derive worst-case (aggregate) separation bounds. We also estimate the expected number of real roots when we draw the coefficients from a specific distribution and illustrate our results experimentally. A generalization to bivariate polynomial systems is also presented. We implemented the algorithm in C as part of the core library of MATHEMATICA for the case $B \in \mathbb{Z}[\lg(q)][x]$ where q is positive rational number and we demonstrate its efficiency over various data sets.

For the entire collection see [Zbl 1379.13001].

MSC:
11Y16 Number-theoretic algorithms; complexity
11R04 Algebraic numbers; rings of algebraic integers
12D10 Polynomials in real and complex fields: location of zeros (algebraic theorems)
68W30 Symbolic computation and algebraic computation

Keywords:
real root isolation; logarithm; algebraic number; separation bound

Software:
Mathematica; ISOLATE

Full Text: DOI

References:

42. Yakoubsohn, J.-C.: Numerical analysis of a bisection-exclusion method to find zeros of univariate analytic functions. J.

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.