Let k be an algebraically closed field of characteristic $p \geq 0$ and $\varphi : S \to B$ be an elliptic surface of Kodaira dimension 1 over k. It is known that if S is algebraic and $p \neq 2$, then for $m \geq 14$, mK_S gives a structure of elliptic surface and 14 is the best possible. It is also known, when $p = 2$, for $m \geq 12$, mK_S gives a structure of elliptic surface and 12 is the best possible. [T. Katsuro and K. Ueno, Math. Ann. 272, 291–330 (1985; Zbl 0553.14019)], [T. Katsura, Compos. Math. 97, No. 1–2, 119–134 (1995; Zbl 0860.14036)]. In the paper under review, the author proves that a similar result for quasi-elliptic surfaces over a field of characteristic 3. The main result of this paper is following:

Theorem 3.1. Assume that the characteristic $p = 3$. Then for any quasi-elliptic surface $f : S \to B$ with $\kappa(S) = 1$ over k and for any $m \geq 5$, the multicanonical system $|mK_S|$ gives the unique structure of quasi-elliptic surface, and the number 5 is best possible.

The key step of the proof of the main result is the inequality $\chi(O_S) \geq (1 - g)/3$ (Lemma 2.2). Here g is the genus of the base curve B.

For the entire collection see [Zbl 1382.14002].

Reviewer: Junmyeong Jang (Ulsan)

MSC:

14J27 Elliptic surfaces, elliptic or Calabi-Yau fibrations
14C20 Divisors, linear systems, invertible sheaves

Keywords:

quasi-elliptic surfaces; multicanonical system

Full Text: arXiv