Algorithmic and modeling insights via volumetric comparison of polyhedral relaxations.

Summary: This is mostly a survey on some mathematical results concerning volumes of polytopes of interest in non-convex optimization. Our motivation is in geometrically comparing relaxations in the context of mixed-integer linear and nonlinear optimization, with the goal of gaining algorithmic and modeling insights. We consider relaxations of: fixed-charge formulations, vertex packing polytopes, boolean-quadric polytopes, and relaxations of graphs of monomials on box domains. Besides surveying the area, we do give a few new results, and we provide many directions for further work.

MSC:
- 52B11 n-dimensional polytopes
- 52B12 Special polytopes (linear programming, centrally symmetric, etc.)
- 90C10 Integer programming
- 90C11 Mixed integer programming
- 90C26 Nonconvex programming, global optimization
- 90C27 Combinatorial optimization
- 90C57 Polyhedral combinatorics, branch-and-bound, branch-and-cut
- 52A38 Length, area, volume and convex sets (aspects of convex geometry)

Keywords:
- polytope; volume; global optimization; mixed-integer nonlinear optimization; fixed charge; facility location; vertex packing; Boolean quadric; monomial; spatial branch-and-bound

Software:
- SCIP; Bonmin; ANTIGONE; Sostools

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.