Mezzetti, Emilia; Miró-Roig, Rosa M.

Togliatti systems and Galois coverings. (English) Zbl 1395.13019

A Togliatti system is an Artinian ideal \(I \) generated by forms of degree \(d \) that define a morphism \(\varphi : \mathbb{P}^n \to \mathbb{P}^{r-1} \) whose image \(X \) satisfies at least one Laplace equation of order \(d - 1 \).

In this article, the authors study Togliatti systems with the additional property that \(\varphi \) is a Galois covering with cyclic Galois group \(\mathbb{Z}/d\mathbb{Z} \) (“GT systems”). They completely classify GT systems if \(d \) is a prime power. For general \(d \), a complete classification under an additional symmetry assumption on the generating monomials is given. This constitutes essential progress over existing results for \(d = 3 \).

The ideal of the rational surface associated to a GT system is generated by quadrics and, if \(d \) is odd, by cubics. It has three singular points whose respective types are determined. Finally, a relation between minimal monomial GT systems and Ceva configurations of \(d^2 \) lines and \(3d \) points such that each point is incident with \(d \) lines and each line contains 3 points, is unveiled.

Reviewer: Hans-Peter Schröcker (Innsbruck)

MSC:

13E10 Commutative Artinian rings and modules, finite-dimensional algebras
14M25 Toric varieties, Newton polyhedra, Okounkov bodies
14N05 Projective techniques in algebraic geometry
14N15 Classical problems, Schubert calculus
53A20 Projective differential geometry

Keywords:

Togliatti system; weak Lefschetz property; Galois covering; toric variety

Software:

Macaulay2; OEIS

Full Text: DOI

References:

[9] Grayson, D. R.; Stillman, M. E., Macaulay2, a software system for research in algebraic geometry, available at:
[23] Wyn-Jones, A., Circulants, Chapters 10 and 11

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.