Counting spanning trees in cobordism of two circulant graphs. (English) Zbl 1398.05058

Summary: We consider a family of graphs $H_n(s_1, \ldots, s_k; t_1, \ldots, t_\ell)$ that is a generalisation of the family of I-graphs, which, in turn, includes the generalized Petersen graphs. We present an explicit formula for the number $\tau(n)$ of spanning trees in these graphs in terms of the Chebyshev polynomials and find its asymptotics. Also, we show that the number of spanning trees can be represented in the form $\tau(n) = pna(n)^2$, where $a(n)$ is an integer sequence and p is a prescribed integer depending on the number of even elements in the sequence $s_1, \ldots, s_k, t_1, \ldots, t_\ell$ and the parity of n.

MSC:
05C05 Trees
05C31 Graph polynomials
05C75 Structural characterization of families of graphs
05C30 Enumeration in graph theory
39A10 Additive difference equations

Keywords:
circulant graph; I-graph; Petersen graph; spanning tree; Chebyshev polynomial; Mahler measure

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.