Angelini, Patrizio; Bruckdorfer, Till; Di Battista, Giuseppe; Kaufmann, Michael; Mchedlidze, Tamara; Roselli, Vincenzo; Squarcella, Claudio

Small universal point sets for k-outerplanar graphs. (English) Zbl 1398.05068

Summary: A point set $S \subseteq \mathbb{R}^2$ is universal for a class G of planar graphs if every graph of G has a planar straight-line embedding on S. It is well-known that the integer grid is a quadratic-size universal point set for planar graphs, while the existence of a subquadratic universal point set still remains one of the most fascinating open problems in graph drawing. In this paper we make a major step towards a solution for this problem. Motivated by the fact that each point set of size n in general position is universal for the class of n-vertex outerplanar graphs, we concentrate our attention on k-outerplanar graphs. We prove that they admit an $O(n \log n)$-size universal point set in two distinct cases, namely when $k = 2$ (2-outerplanar graphs) and when k is unbounded but each outerplanarity level is restricted to be a simple cycle (simply-nested graphs).

MSC: 05C10 Planar graphs; geometric and topological aspects of graph theory

Keywords: universal point sets; planar graphs; k-outerplanarity

Full Text: DOI

References:

Edited by FIZ Karlsruhe, the European Mathematical Society and the Heidelberg Academy of Sciences and Humanities © 2022 FIZ Karlsruhe GmbH Page 1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.