Jendrol’, Stanislav

Facial rainbow edge-coloring of plane graphs. (English) Zbl 1403.05048
Graphs Comb. 34, No. 4, 669-676 (2018).

In this note, the author introduces a facial rainbow edge-coloring of a loopless connected plane graph G, which is an edge-coloring of G such that two distinct edges receive distinct colors if they lie on a common facial path of G. The minimum number of colors in such a coloring is called the facial rainbow edge number of G and is denoted by $erb(G)$. Let G be a loopless connected plane graph and let $L(G)$ be the length of the longest facial path of G. The author proves that $erb(G) \leq \lceil \frac{3}{2}(L(G) + 1) \rceil$ for all connected loopless plane graphs (this bound is tight). For the family of all 3-connected plane graphs, this bound is improved to $L(G) + 2$. For trees, $erb(G) \leq \lceil \frac{3}{2}L(G) \rceil$ holds (which is also tight), and if G is a tree with $L(G) \geq 7$ and without vertices of degree two, then $erb(G) = L(G)$.

Reviewer: Juan José Montellano Ballesteros (Coyoacán)

MSC:

05C15 Coloring of graphs and hypergraphs
05C10 Planar graphs; geometric and topological aspects of graph theory
05C40 Connectivity

Keywords: cyclic coloring; rainbow coloring; plane graphs

Full Text: DOI

References:

Plummer, MD; Toft, B. Cyclic coloration of 3-polytopes, J. Graph Theory, 11, 507-515, (1987) · Zbl 0655.05030 · doi:10.1002/jgt.3190110407

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.