Alvarado, J. D.; Dantas, S.; Mohr, E.; Rautenbach, D.
On the maximum number of minimum dominating sets in forests. (English) Zbl 1405.05129

Summary: G. H. Fricke et al. [Discuss. Math., Graph Theory 31, No. 3, 517–531 (2011; Zbl 1229.05219)]
asked whether every tree with domination number γ has at most 2^γ minimum dominating sets. A. Bień
[“Properties of gamma graphs of trees”, presentation at Colourings, independence and domination, 17th
workshop on graph theory, CID’17. Piechowice, Poland, September 17–22, 2017] gave a counterexample,
which allows us to construct forests with domination number γ and 2.0598γ minimum dominating sets.
We show that every forest with domination number γ has at most 2.4606γ minimum dominating sets,
and that every tree with independence number α has at most $2^{\alpha-1} + 1$ maximum independent sets.

MSC:
05C69 Vertex subsets with special properties (dominating sets, independent sets, cliques, etc.)
05C05 Trees
05C35 Extremal problems in graph theory

Keywords:
tree; domination number; minimum dominating set; independence number; maximum independent set

Full Text: DOI arXiv

References:
[1] A. Bień, Properties of gamma graphs of trees, presentation at the 17th Workshop on Graph Theory Colourings, Independence
and Domination (CID 2017), Piechowice, Poland.
[3] Connolly, S.; Gabor, Z.; Godbole, A.; Kay, B.; Kelly, T., Bounds on the maximum number of minimum dominating sets,
[4] Fomin, F. V.; Grandoni, F.; Pyatkin, A. V.; Stepanov, A. A., Bounding the number of minimal dominating sets: a measure
Dekker, Inc. New York · Zbl 0890.05002
[8] Włoch, I., Trees with extremal numbers of maximal independent sets including the set of leaves, Discrete Math., 308, 4768-
4772, (2008) · Zbl 1158.05007
Zbl 0764.05082

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically
matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original
paper as accurately as possible without claiming the completeness or perfect precision of the matching.