Correia, Alexandre C. M.; Boué, Gwenaël; Laskar, Jacques
Secular and tidal evolution of circumbinary systems. (English) Zbl 1407.70028

Summary: We investigate the secular dynamics of three-body circumbinary systems under the effect of tides. We use the octupolar non-restricted approximation for the orbital interactions, general relativity corrections, the quadrupolar approximation for the spins, and the viscous linear model for tides. We derive the averaged equations of motion in a simplified vectorial formalism, which is suitable to model the long-term evolution of a wide variety of circumbinary systems in very eccentric and inclined orbits. In particular, this vectorial approach can be used to derive constraints for tidal migration, capture in Cassini states, and stellar spin-orbit misalignment. We show that circumbinary planets with initial arbitrary orbital inclination can become coplanar through a secular resonance between the precession of the orbit and the precession of the spin of one of the stars. We also show that circumbinary systems for which the pericenter of the inner orbit is initially in libration present chaotic motion for the spins and for the eccentricity of the outer orbit. Because our model is valid for the non-restricted problem, it can also be applied to any three-body hierarchical system such as star-planet-satellite systems and triple stellar systems.

MSC:
70M20 Orbital mechanics
70F07 Three-body problems
85A05 Galactic and stellar dynamics

Keywords:
extended body; dissipative forces; planetary systems; rotation

Full Text: DOI arXiv

References: