Das, Kinkar Ch.; Liu, Muhuo

On two conjectures of spectral graph theory. (English) [Zbl 1409.05128]

Summary: Let $G = (V, E)$ be a simple graph. Denote by $D(G)$ the diagonal matrix of its vertex degrees and by $A(G)$ its adjacency matrix. Then the Laplacian matrix and the signless Laplacian matrix of G are $L(G) = D(G) - A(G)$ and $Q(G) = D(G) + A(G)$, respectively. Also denote by $\lambda_1(G)$, $a(G)$, $q_1(G)$ and $\delta(G)$ the largest eigenvalue of $A(G)$, the second smallest eigenvalue of $L(G)$, the largest eigenvalue of $Q(G)$ and the minimum degree of G, respectively. In this paper, we give partial proofs to the following two conjectures:

(i) M. Aouchiche [Comparaison automatisée d’invariants en théorie des graphes. Montréal: École Polytechnique de Montréal (PhD Thesis) (2006)] if G is a connected graph, then $a(G)/\delta(G)$ is minimum for graph composed of 2 triangles linked with a path.

(ii) M. Aouchiche and P. Hansen [Linear Algebra Appl. 432, No. 9, 2293-2322 (2010; Zbl 1218.05087)] and D. Cvetković et al. [Publ. Inst. Math., Nouv. Sér. 81(95), 11-27 (2007; Zbl 1164.05038)] if G is a connected graph with $n \geq 4$ vertices, then $q_1(G) - 2\lambda_1(G) \leq n - 2\sqrt{n-1}$ with equality holding if and only if $G \cong K_{1,n-1}$.

MSC:
05C50 Graphs and linear algebra (matrices, eigenvalues, etc.)
15A18 Eigenvalues, singular values, and eigenvectors
15B36 Matrices of integers

Keywords:
graph; spectral radius; signless Laplacian spectral radius; algebraic connectivity

Software:
SageMath

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.