Summary: In this paper, we characterize the hyperbolic product graphs for the Cartesian sum $G_1 \oplus G_2$: $G_1 \oplus G_2$ is always hyperbolic, unless either G_1 or G_2 is the trivial graph (the graph with a single vertex); if G_1 or G_2 is the trivial graph, then $G_1 \oplus G_2$ is hyperbolic if and only if G_2 or G_1 is hyperbolic, respectively. Besides, we characterize the Cartesian sums with hyperbolicity constant $\delta(G_1 \oplus G_2) = t$ for every value of t. Furthermore, we obtain the sharp inequalities $1 \leq \delta(G_1 \oplus G_2) \leq 3/2$ for every non-trivial graphs G_1, G_2. In addition, we obtain simple formulas for the hyperbolicity constant of the Cartesian sum of many graphs. Finally, we prove the inequalities $3/2 \leq \delta(G_1 \oplus G_2) \leq 2$ for the complement of $G_1 \oplus G_2$ for every G_1, G_2 with min\{diam $V(G_1)$, diam $V(G_2)$\} ≥ 3.

MSC:
05C75 Structural characterization of families of graphs
05C12 Distance in graphs
05A20 Combinatorial inequalities

Keywords:
Cartesian sum of graphs; geodesics; Gromov hyperbolicity; complement of graphs

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.