The Boolean rank of the uniform intersection matrix and a family of its submatrices.
(English) Zbl 1411.05173
Linear Algebra Appl. 574, 67-83 (2019).

Summary: We study the Boolean rank of two families of binary matrices. The first is the binary matrix $A_{k,t}$ that represents the adjacency matrix of the intersection bipartite graph of all subsets of size t of $\{1,2,\ldots,k\}$. We prove that its Boolean rank is k for every $k \geq 2t$.

The second family is the family $U_{s,m}$ of submatrices of $A_{k,t}$ that is defined as $U_{s,m} = (J_m \otimes I_s) + (I_m \otimes J_s)$, where I_s is the identity matrix, J_s is the all-ones matrix, $s = k - 2t + 2$ and $m = \binom{2t-2}{t-1}$. We prove that the Boolean rank of $U_{s,m}$ is also k for the following values of t and s: for $s = 2$ and any $t \geq 2$; for $t = 3$ and any $s \geq 2$; and for any $t \geq 2$ and $s > 2t - 2$, that is $k > 4t - 4$.

MSC:

- 05C50 Graphs and linear algebra (matrices, eigenvalues, etc.)
- 15B34 Boolean and Hadamard matrices
- 15B99 Special matrices
- 68Q99 Theory of computing

Keywords:

- Boolean rank
- cover size
- intersection matrix

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.