Borodin, O. V.; Ivanova, A. O.
An improvement of Lebesgue’s description of edges in 3-polytopes and faces in plane quadrangulations. (English) Zbl 1414.05089

Summary: An edge e in a 3-polytope is of type (k_1, k_2, k_3, k_4) if the set of degrees of the vertices and faces incident with e is majorized by the vector (k_1, k_2, k_3, k_4).

H. Lebesgue [J. Math. Pures Appl. (9) 19, 27–43 (1940; Zbl 0024.28701)] proved that every 3-polytope has an edge of one of the types $(3, 3, 3, \infty)$, $(3, 3, 4, 11)$, $(3, 3, 5, 7)$, $(3, 4, 4, 5)$.

This also provides a description of the faces of quadrangulated 3-polytopes in terms of degrees of their incident vertices.

The purpose of our paper is to prove that every 3-polytope has an edge of one of the types $(3, 3, 3, \infty)$, $(3, 3, 4, 9)$, $(3, 3, 5, 6)$, $(3, 4, 4, 5)$, where all parameters except possibly 9 are best possible. We believe that 9 here is sharp and thus the whole description is tight.

Our proof relies on the discharging method.

MSC:
05C10 Planar graphs; geometric and topological aspects of graph theory
52B05 Combinatorial properties of polytopes and polyhedra (number of faces, shortest paths, etc.)

Keywords:
plane graph; 3-polytope; edge; structural properties; height; weight

Full Text: DOI

References:
25. Kotzig, A., From the theory of Eulerian polyhedra, Mat. Čas., 13, 20-34, (1963), (in Russian) - Zbl 0134.19601
35. Steinitz, E., Polyheder und Raumeinteilungen, Enzykl. math. Wiss. (Geometrie), 3AB, 12, 1-139, (1922)

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.