A geometric graph in the plane is called angle-monotone of width α if any pair of its vertices can be connected by a path such that the angles of any two edges in the path differ by at most α.

Main results of this paper are:

1.) Given S, a set of points in the plane, there is an angle monotone graph spanning S of width 90° and with $O\left(\frac{n^2 \log \log n}{\log n}\right)$ edges.

2.) For any point set of size n and any angle $0 < \alpha < 45^\circ$, an algorithm is provided for the construction of an angle monotone graph of width $90^\circ + \alpha$ and with $O\left(n\alpha\right)$ edges.

3.) The paper describes a 2-local routing algorithm of routing ratio $1/\cos\left(45^\circ + \frac{\alpha}{2}\right)$ that finds angle monotone graphs of width $90^\circ + \alpha$ in any k-layer 3-sweep graph H_k, where $\alpha = 180^\circ/k$.

4.) There is a 1-local routing algorithm that finds angle-monotone paths of width 120° in any full Θ_6-graph.

Reviewer: Stelian Mihalas (Timișoara)

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.