Automorphisms of the Lie algebra of vector fields on affine n-space. (English) Zbl 1418.17051

Summary: We study the vector fields $\text{Vec}(\mathbb{A}^n)$ on affine n-space \mathbb{A}^n, the subspace $\text{Vec}^c(\mathbb{A}^n)$ of vector fields with constant divergence, and the subspace $\text{Vec}^0(\mathbb{A}^n)$ of vector fields with divergence zero, and we show that their automorphisms, as Lie algebras, are induced by the automorphisms of \mathbb{A}^n:

$$\text{Aut}(\mathbb{A}^n) \rightarrow \text{Aut}_{\text{Lie}}(\text{Vec}(\mathbb{A}^n)) \rightarrow \text{Aut}_{\text{Lie}}(\text{Vec}^0(\mathbb{A}^n)) \rightarrow \text{Aut}_{\text{Lie}}(\text{Vec}^0(\mathbb{A}^n)).$$

This generalizes results of the second author obtained in dimension 2, see the second author, Lie subalgebras of vector fields and the Jacobian conjecture, arxiv:1311.0232 (2013)]. The case of $\text{Vec}(\mathbb{A}^n)$ goes back to V. S. Kulikov [Russ. Acad. Sci., Izv., Math. 41, No. 2, 351–365 (1993); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 56, No. 5, 1086–1103 (1992; Zbl 0796.14008)]. This generalization is crucial in the context of infinite-dimensional algebraic groups, because $\text{Vec}^c(\mathbb{A}^n)$ is canonically isomorphic to the Lie algebra of $\text{Aut}(\mathbb{A}^n)$, and $\text{Vec}^0(\mathbb{A}^n)$ is isomorphic to the Lie algebra of the closed subgroup $\text{SAut}(\mathbb{A}^n) \subset \text{Aut}(\mathbb{A}^n)$ of automorphisms with Jacobian determinant equal to 1.

MSC:

17B66 Lie algebras of vector fields and related (super) algebras
14R15 Jacobian problem

Keywords:
automorphisms; vector fields; Lie algebras; affine n-space

Full Text: DOI arXiv

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.