The author continues his study [the author, J. Math. Anal. Appl. 461, No. 2, 1241–1259 (2018; Zbl 1384.37080)] of Hamiltonian systems with several spectral parameters of the form:

\[JY'(x) = \left[\sum_{k=1}^{m} \lambda_k A_k(x) + B(x) \right] Y(x), \quad x \in [a, b], \]

where \(A_k \) and \(B \) are real, locally integrable \((2n+1) \times (2n+1)\) matrices such that \(A_k^* = A_k, B^* = B \), \(\lambda_k \) are complex parameters, \(a \) is a regular endpoint and \(b \) is a singular endpoint, \(J^* = -J \). A behavior of the solution at singular point is investigated by means of the characteristic function theory. Some results for Weyl-Titchmarsh functions are given.

Reviewer: Zdzisław Dzedzej (Gdansk)

MSC:
37J45 Periodic, homoclinic and heteroclinic orbits; variational methods, degree-theoretic methods (MSC2010)
34B20 Weyl theory and its generalizations for ordinary differential equations

Keywords:
Hamiltonian system; multiparameter eigenvalue problem; Weyl theory; tensor product

Full Text: DOI

References:
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.